

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry 16 (2005) 2973-2979

Tetrahedron: Asymmetry

A novel boron trifluoride etherate mediated deep-seated rearrangement of an α , β -epoxyketone

Adusumilli Srikrishna* and Sripada S. V. Ramasastry

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India

Received 21 July 2005; accepted 25 July 2005 Available online 19 August 2005

Abstract—Acid catalysed reaction of carvone epoxide 2 resulted in dimeric products 3 and 4, in contrast to the expected ring contraction product. Reaction of β -methylcarvone epoxides 8 and 11 with acids furnished 2-acetyl-4-isopropenylcyclopentanones 9 and 14 containing a stereodefined quaternary carbon atom. On the other hand, the reaction of epoxides 8 and 11 with boron trifluoride etherate lacks the stereoselectivity and in addition, *anti*-epoxide 8 furnished lactone 18 via an unusual deep seated rearrangement. © 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Epoxides are versatile intermediates in organic synthesis. The inherent polarity and strain of the three-membered ring makes epoxides susceptible to reactions with a large number of reagents. The synthetically useful reactions of epoxides include inter- and intramolecular nucleophilic ring opening, reduction to alcohols, deoxygenation to alkenes and more importantly, rearrangements to carbonyl compounds and allylic alcohols. Among the variety of functionalised epoxides, α,β -epoxy ketones have proven to be interesting and useful substrates in organic synthesis. The presence of a carbonyl group on the epoxide carbon provides the possibility for regio- and stereoselective transformations. In particular, acid catalysed rearrangement of appropriately substituted α,β -epoxy ketones to 1,3-dicarbonyl compounds has attracted the attention of various research groups (Eq. 1). When α,β -epoxy ketones are treated with Lewis acids, exclusive 1,2-carbonyl migration occurs in many cases if the carbonyl π -bond can achieve an orbital alignment that can result in delocalisation. When geometric constraints prevent the involvement of the carbonyl π -bond, participation of the Lewis acid catalyst can result in halohydrin formation. It is generally accepted that mono- and 1,1-disubstituted epoxides, give aldehydes on rearrangement with acids, but with 1,2-disubstituted, tri- and tetrasubstituted epoxides a variety of factors determine the outcome of the reaction.

0957-4166/\$ - see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2005.07.030

This includes the nature of the substituents on the epoxide, the stereochemistry at the epoxide oxygen, and the nature of the Lewis acid employed.^{1,2} For the development of a convenient procedure for the enantioselective generation of 2-acetylcyclopentanones, we have investigated the acid catalysed rearrangement of the epoxides derived from carvone. These investigations revealed some unexpected rearrangements depending on the acid employed and the temperature of the reaction. Herein, we report the details of these investigations.

2. Results and discussion

It was expected that the Lewis acid mediated rearrangement of carvone epoxide 2 would generate optically active 2-acetyl-4-isopropenylcyclopentanone, a useful chiron in natural product synthesis. However, contrary to our expectation, reaction of carvone epoxide 2 with boron trifluoride etherate failed to generate the ring contracted product and furnished, exclusively, the dimeric compounds 3 and 4, whose structures were deduced from their spectral data.³ The reaction was found to be much more efficient with Amberlyst-15 in refluxing benzene and generated the dimers 3 and 4 in 77 and 20% yield, respectively. Formation of the dimers can be readily explained as depicted in Scheme 1. Acid

^{*} Corresponding author. Tel.: +91 80 22932215; fax: +91 80 23600683/ 23600529; e-mail: ask@orgchem.iisc.ernet.in

Scheme 1. Reagents and conditions: (a) 30% H₂O₂, 6 M NaOH, MeOH, 0 °C, 2 h, 70%; (b) BF₃·Et₂O (excess), 0.1 M CH₂Cl₂, rt, 10 min, 3, 51% and 4, 24%; (c) Amberlyst-15 (1:1 weight equivalent), 0.1 M C₆H₆, reflux, 2.5 h, 3, 77% and 4, 20%.

mediated rearrangement of epoxide 2 generates a tertiary allyl alcohol, which on dehydration generates styrene 5. Dimerisation of the styrene 5 via cyclisation (at the *para*- or *ortho*-positions to the hydroxy group) of carbonium ion 6 generates the regioisomeric aryl indanols 3 and 4 (Scheme 2). As expected, dimers 3 and 4 were found to be racemic.

Scheme 2.

It was reasoned that the presence of a substituent at the β -position of carvone **1** would alter the course of the reaction, as the intermediate tertiary carbonium ion would be more favoured, and in addition also lead to acetylcyclopentanes containing a stereodefined quaternary carbon atom. Reaction of β -methylcarvone⁴ **7** with 30% hydrogen peroxide and sodium hydroxide in methanol furnished the *anti*-epoxide **8** (Scheme 3).⁵ As anticipated, reaction of *anti*-epoxide **8** with an excess of *p*-toluenesulfonic acid (*p*-TSA) in methylene chloride at room temperature for 4.5 h furnished β -diketone **9** in 74% yield in a highly stereoselective manner, whose

structure was established from its spectral data. The reaction was found to be very slow with sub-stoichiometric amounts of p-TSA. The reaction was also found to proceed smoothly with camphorsulfonic acid (CSA) and Amberlyst-15 (Table 1). Stereochemistry at the quaternary carbon of dione 9 was assigned on the basis of the mechanism and was supported by the NOESY spectrum. To confirm the stereostructure, diketone 9 was transformed into a crystalline derivative. Thus, the reaction of diketone 9 with p-toluenesulfonyl hydrazide furnished the hydroxypyrazole derivative 10 (Scheme 4), whose single crystal X-ray diffraction analysis, Figure 1, unambiguously established the stereostructure of diketone 9.

In order to obtain the other diastereoisomer of 9, the reaction was carried out with the syn-epoxide 11, which was obtained by hydroxy directed epoxidation of allyl alcohol 12. Thus, the stereoselective reduction⁶ of β -methylcarvone 7 with lithium aluminium hydride (LAH) at low temperature furnished the syn-allyl alcohol 12. Reaction of allyl alcohol 12 with *m*-chloroperbenzoic acid (m-CPBA) in methylene chloride furnished the epoxyalcohol 13 in a regio- and stereoselective manner, which on oxidation with pyridinium chlorochromate (PCC) and sodium acetate in methylene chloride generated the syn-epoxide 11. As anticipated, the reaction of syn-epoxide 11 with an excess of p-TSA in methylene chloride at room temperature for 8 h furnished β -diketone 14 in 65% yield along with a trace amount of epimeric β-diketone 9. Conversely, the reaction of the epoxide 11 with Amberlyst-15 in methylene chloride was found to be very clean and furnished βdiketone 14 in 78% yield in a highly stereoselective manner. The results are summarised in Table 1.

Scheme 3. Reagents and conditions: (a) (i) MeMgI, Et₂O, 0 °C \rightarrow rt, 1 h; (ii) PCC, silica gel, CH₂Cl₂, rt 4 h; (b) 30% H₂O₂, 6 N NaOH, MeOH, 6 h; (c) see Table 1; (d) LAH, Et₂O, -70 °C, 1 h; (e) *m*-CPBA, NaHCO₃, CH₂Cl₂, 0 °C \rightarrow rt, 2 h; (f) PCC, NaOAc, CH₂Cl₂, rt, 3 h.

Entry	Epoxide	Reaction conditions	Products (yield, %)
а	8	<i>p</i> -TSA, rt, CH ₂ Cl ₂ , 4.5 h	9 (74)
b	8	Amberlyst-15, CH ₂ Cl ₂ , rt, 10 h	9 (65)
с	8	CSA, CH ₂ Cl ₂ , rt, 24 h	9 (73)
d	11	<i>p</i> -TSA, rt, CH ₂ Cl ₂ , 8 h	14 (65) ^a
e	11	Amberlyst-15, CH ₂ Cl ₂ , rt, 13 h	14 (78)
f	8	TiCl ₄ , CH ₂ Cl ₂ , $-70 \rightarrow 0$ °C, 3 h	15 (35), 16 (34)
g	11	TiCl ₄ , CH ₂ Cl ₂ , $-70 \rightarrow 0$ °C, 3 h	17 (78)
h	8	BF ₃ ·Et ₂ O, CH ₂ Cl ₂ , -70 °C, 4 h	9 (60), 14 (29)
i	8	BF_3 · Et_2O , CH_2Cl_2 , $-70 \text{ °C} \rightarrow rt$, 7 h	9 (20), 14 (10), 18 (35)
j	8	BF ₃ ·Et ₂ O, CH ₂ Cl ₂ , 0 °C \rightarrow rt, 14 h	9 (51), 14 (22), 18 (12)
k	11	BF ₃ ·Et ₂ O, CH ₂ Cl ₂ , 0 °C \rightarrow rt, 3 h	9 (24), 14 (70)

Table 1. Reactions of the ketoepoxides 8 and 11

^a Minor amount (\approx 5%) of the dione 9 was also obtained.

Scheme 4.

Figure 1. ORTEP of the sulfonamide 10.

Next, reactions were explored with Lewis acids. Reaction of epoxides 8 and 11 with titanium tetrachloride failed to generate the β -diketones 9 and 14 (Scheme 5). Treatment of *anti*-epoxide 8 with 30 mol % of titanium tetrachloride furnished a 1:1 mixture of chlorohydrin 15 and allyl alcohol 16 in 70% yield. Conversely, the reaction of *syn*-epoxide 11 under the same conditions furnished cleanly chlorohydrin 17, mp 77–79 °C, in 78% yield, whose structure was confirmed by single crys-

tal X-ray diffraction analysis.7 On the other hand, in contrast to the literature reports,^{1,8} the reaction of anti-epoxide 8 with boron trifluoride etherate was found to be nonstereoselective and temperature dependent. For example, treatment of epoxide 8 with 1 equiv of boron trifluoride etherate in methylene chloride at -70 °C for 4 h furnished a 2:1 mixture of diketones 9 and 14. On the other hand, the addition of boron trifluoride etherate at -70 °C and then allowing the reaction to reach room temperature over a period of 7 h furnished an unusual product, lactone 18 in 35% yield, along with 30% yield of a 2:1 mixture of the diketones 9 and 14. However, the addition of 30 mol % of boron trifluoride etherate at 0 °C and then carrying out the reaction at room temperature for 14 h furnished diketones 9 and 14, and lactone 18 in 51, 22 and 12% yields, respectively. In a similar manner, the reaction of synepoxide 11 with 30 mol % of boron trifluoride etherate in methylene chloride furnished diketones 9 and 14 in 94% yield in 1:3 ratio. Results are summarised in Table 1. Formation of both diketones 9 and 14 from the epoxides 8 and 11 with boron trifluoride etherate indicates that the reaction proceeds through a carbonium ion, and the anchimeric assistance of the isopropenyl group also plays a crucial role in the product distribution.

The structure of lactone **18** was deduced from its spectral data, in particular, the presence of a carbonyl absorption band at 1773 cm^{-1} in the IR spectrum, the lactone carbon resonance at δ 175.3 in the ¹³C NMR spectrum and analysis of the ¹H NMR spectrum. In order to confirm the structure of lactone **18**, it was treated with 1 equiv of bromine to furnish dibromide **19**

(Scheme 6). Single crystal X-ray diffraction analysis (Fig. 2) of dibromide **19** unambiguously established the structure of lactone **18**.

Figure 2. ORTEP diagram of 19.

The formation of lactone **18** from *anti*-epoxide **8**, obviously, involves a deep-seated rearrangement. A probable mechanism is depicted in Scheme 7. Intramolecular nucleophilic attack of the isopropenyl olefin on to boron trifluoride coordinated epoxide in **8** from the *anti* face furnishes the bicyclo[2.2.2]octyl carbonium ion **20**. Intramolecular addition of oxygen to ketone group followed by ring cleavage and trapping of the carbonium ion by the resultant carboxylate **21** furnishes lactone **18**. The mechanism is partially supported by the absence of a similar product under identical conditions from epoxide **11**, which contains the epoxy oxygen and the isopropenyl group on the same side.

3. Conclusion

In conclusion, we have developed a convenient enantioselective route to 2-acetylcyclopentanones containing a stereodefined quaternary carbon atom starting from the readily and abundantly available monoterpene (R)carvone, while also observing a novel rearrangement.

4. Experimental

Melting points are recorded using Tempo and Mettler FP1 melting point apparatus in capillary tubes and are uncorrected. IR spectra were recorded on a Jasco FTIR 410 spectrophotometer. ¹H (300 MHz) and ¹³C (75 MHz) spectra were recorded on JNM λ -300 spectrometer. Samples were prepared using a 1:1 mixture of CDCl₃ and CCl₄ as solvent for recording the NMR spectra. The chemical shifts (δ ppm) and coupling constants (Hz) are reported in the standard fashion with reference to either internal tetramethylsilane (for ¹H) or the central line (77.1 ppm) of CDCl₃ (for 13 C). In the 13 C NMR spectra, the nature of the carbons (C, CH, CH₂ or CH₃) were determined by recording the DEPT-135 and are given in parentheses. Low-resolution mass spectra were recorded using a Shimadzu QP-5050A GC-MS instrument using a direct inlet (EI) mode. Relative intensities are given in parentheses. High resolution mass spectra were recorded on a Micromass Q-TOF micro mass spectrometer using electron spray ionization mode. Optical rotations were measured using a Jasco DIP-370 digital polarimeter and $[\alpha]_D$ values are given in units of $10^{-1} \text{ deg cm}^2 \text{ g}^{-1}$. Acme's silica gel (100–200 mesh) was used for column chromatography (approximately 15-20 g per 1 g of the crude product). Dry ether was obtained by distillation over sodium and stored over sodium wire. Dry methylene chloride was prepared by distilling over calcium hydride. All the commercial reagents were used as such without further purification.

4.1. 3-(3-Hydroxy-4-methylphenyl)-1,1,3,5-tetramethylindan-4-ol 4 and 1-(3-hydroxy-4-methylphenyl)-1,3,3,6tetramethylindan-5-ol 4

To a magnetically stirred solution of carvone epoxide 2 (40 mg, 0.24 mmol) in dry benzene (2.4 mL, 0.1 M) was added Amberlyst-15 (40 mg) and refluxed for 2.5 h. The reaction mixture was cooled and the resin filtered off using a sintered funnel. Evaporation of the solvent and purification of the residue on a silica gel column using ethyl acetate-hexane (1:30) as eluent furnished, first the minor diol **4** (7 mg, 20% as oil. IR (neat): v_{max}/cm^{-1} 3521, 1664, 1587. ¹H NMR (300 MHz, $CDCl_3 + CCl_4$): δ 7.04 (1H, d, J 7.8 Hz), 7.00 (1H, d, J 7.2 Hz), 6.80 (1H, dd, J 7.8 and 1.8 Hz), 6.64 (1H, d, J 7.2 Hz), 6.63 (1H, d, J 1.8 Hz), 4.63 (1H, br s), 4.20 (1H, br s), 2.25 and 2.13 (2H, 2×d, J 13.2 Hz, H-2), 2.20 (3H, s), 2.14 (3H, s), 1.72 (3H, s), 1.34 (3H, s), 1.26 (3H, s). ¹³C NMR (75 MHz, $CDCl_3 + CCl_4$): δ 154.4 (C), 151.2 (C), 150.1 (C), 147.9 (C), 134.0 (C), 131.5 (CH), 130.9 (CH), 123.1 (C), 122.3 (C), 118.2 (CH), 114.4 (CH), 113.0 (CH), 61.1 (CH₂), 49.6 (C), 43.4 (C), 31.73 (CH₃), 31.68 (CH₃), 27.0 (CH₃), 15.5 (2C, CH₃). Mass: *m*/*z* 296 (M⁺, 47), 281 (100, M–15), 189 (12), 173 (94), 158 (10), 133 (10), 121 (16). HRMS: m/z Calcd for C₂₀H₂₄O₂Na (M+Na): 319.1674. Found: 319.1692.

Further elution of the column using ethyl acetate-hexane (1:20) as eluent furnished the major diol 3 (28 mg, 78%) as a solid, which was recrystallised from ethanol. Mp: 177–178 °C [lit.³ mp: 179–180 °C]. IR (neat): v_{max} / cm^{-1} 3403. ¹H NMR (300 MHz, $CDCl_3 + CCl_4$): δ 6.93 (1H, d, J 7.8 Hz), 6.78 (1H, s), 6.64 (1H, dd, J 7.8 and 1.8 Hz), 6.51 (1H, s), 6.47 (1H, d, J 1.8 Hz), 4.80 (1H, br s), 2.32 and 2.10 (2H, 2×d, J 12.9 Hz), 2.21 (3H, s), 2.17 (3H, s), 1.58 (3H, s), 1.26 (3H, s), 1.00 (3H, s), 1.43 (1H, s). ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 153.5 (C), 153.4 (C), 151.4 (C), 150.8 (C), 140.8 (C), 130.6 (CH), 127.0 (CH), 122.1 (C), 120.6 (C), 119.0 (CH), 113.5 (CH), 108.7 (CH), 59.7 (CH₂), 50.0 (C), 42.7 (C), 31.1 (CH₃), 30.8 (CH₃), 30.5 (CH₃), 16.2 (CH₃), 15.4 (CH₃). Mass: *m*/*z* 296 (M⁺, 19), 281 (100, M-15), 189 (9), 173 (40), 133 (10), 121 (10). HRMS: m/z Calcd for $C_{20}H_{24}O_2Na$ (M+Na): 319.1674. Found: 319.1670. Anal. Calcd for C₂₀H₂₄O₂: C, 81.04; H, 8.16. Found: C, 80.81; H, 8.27.

4.2. (-)-(1*S*,4*S*,6*S*)-4-Isopropenyl-1,6-dimethyl-7-oxabicyclo[4.1.0]heptan-2-one 8

To an ice cold, magnetically stirred solution of (S)-3methylcarvone 7 (1 g, 6.1 mmol) in methanol (10 mL) was added 30% aq H_2O_2 (8 mL), followed by a freshly prepared ice cold solution of 6 M aq NaOH (2 mL) dropwise over a period of 20 min. The reaction mixture was stirred for 2 h at the same temperature. It was then diluted with water and extracted with ether $(3 \times 10 \text{ mL})$. The combined organic extract was washed with brine and dried over Na₂SO₄. Evaporation of the solvent and purification of the residue on a silica gel column using CH_2Cl_2 -hexane (1:5) as eluent furnished epoxide 8 (856 mg, 78%) as oil.⁵ IR (neat): v_{max}/cm^{-1} 1706, 1646, 893; ¹H NMR (300 MHz, CDCl₃ + CCl₄): δ 4.68 (1H, s), 4.63 (1H, s), 2.72–2.55 (1H, m), 2.48 (1H, ddd, J 18.0, 5.1 and 1.5 Hz), 2.13 (1H, dd, J 14.4 and 4.2 Hz), 1.90 (1H, dd, J 18.0 and 12.0 Hz), 1.78 (1H, dd, J 17.4 and 11.7 Hz), 1.65 (3H, s), 1.40 (3H, s), 1.32 (3H, s). ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 204.8 (C), 146.4 (C), 110.4 (CH₂), 64.0 (C), 63.4 (C), 41.5 (CH₂), 35.3 (CH₂), 35.0 (CH, C-4), 20.6 (CH₃), 19.6 (CH₃), 11.7 (CH₃).

4.3. (-)-(2*S*,4*S*)-2-Acetyl-4-isopropenyl-2-methylcyclopentanone 9

To a magnetically stirred solution of keto-epoxide **8** (95 mg, 0.53 mmol) in dry CH₂Cl₂ (5.3 mL, 0.1 M) was added Amberlyst-15 (95 mg) and stirred for 10 h at rt. The reaction mixture was then filtered through a small Celite pad. Evaporation of the solvent and purification of the residue on a silica gel column using ethyl acetate–hexane (1:50) as eluent furnished diketone **9** (62 mg, 65%) as oil. $[\alpha]_D^{23} = -192.9$ (*c* 1.82, CHCl₃). IR (neat): v_{max}/cm^{-1} 1741, 1704, 1648, 894. ¹H NMR (400 MHz, CDCl₃ + CCl₄): δ 4.84 (1H, s), 4.79 (1H, s), 2.77 (1H, tt, *J* 12.0 and 5.7 Hz), 2.56–2.45 (2H, m), 2.32 (1H, dd, *J* 17.6 and 12.0 Hz), 1.79 (3H, s), 1.37 (3H, s). ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 214.4 (C), 205.0 (C), 145.3 (C), 110.6 (CH₂), 63.8 (C), 43.6 (CH₂), 39.2 (CH), 37.8 (CH₂), 26.3 (CH₃), 21.1 (CH₃),

20.8 (CH₃). Mass: m/z 180 (M⁺, 5), 162 (10), 137 (48), 123 (45), 109 (25), 96 (85), 95 (100). HRMS: m/z Calcd for C₁₁H₁₆O₂Na (M+Na): 203.1048. Found: 203.1049.

4.4. (+)-(1*R*,5*S*,7*S*)-7-Isopropenyl-4,5-dimethyl-2-[(4-methylphenyl)sulfonyl]-2,3-diazabicyclo[3.3.0]oct-3-en-1-ol 10

To a magnetically stirred solution of diketone 9 (18 mg, 0.1 mmol) in dry MeOH (1 mL) was added tosyl hydrazide (47 mg, 0.25 mmol) and refluxed for 2 h. Evaporation of the solvent under reduced pressure followed by purification of the residue on a silica gel column using ethyl acetate-hexane (1:10-1:8) as eluent furnished pyrazole 10 (17 mg, 50%) as a colourless solid, which was recrystallised from a mixture of CH₂Cl₂-hexanes. Mp: 154–155 °C. $[\alpha]_{D}^{24} = +21.9$ (c 1.51, $\tilde{CH}\tilde{C}l_{3}$). IR (neat): $v_{\text{max}}/\text{cm}^{-1}$ 3482, 1645, 1598, 892. ¹H NMR (300 MHz, $CDCl_3 + CCl_4$): δ 7.83 (2H, d, J 8.4 Hz), 7.28 (2H, d, J 8.4 Hz), 4.68 (1H, s), 4.60 (1H, s), 3.71 (1H, br s), 2.85-2.70 (1H, m), 2.43 (3H, s), 2.39 (1H, ddd, J 12.3, 6.0 and 2.4 Hz), 2.04 (1H, t, J 12.9 Hz), 1.88 (3H, s), 1.78 (1H, ddd, J 12.3, 6.3 and 2.1 Hz), 1.65 (3H, s), 1.54 (1H, t, J 12.3 Hz), 1.15 (3H, s). ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 161.4 (C), 145.0 (C), 143.5 (C), 136.6 (C), 129.3 (2C, CH), 128.2 (2C, CH), 110.1 (CH₂), 103.2 (C), 62.0 (C), 46.9 (CH₂), 43.8 (CH), 42.5 (CH₂), 21.7 (CH₃), 21.2 (CH₃), 17.0 (CH₃), 12.8 (CH₃). HRMS: m/z Calcd for C₁₈H₂₃N₂O₂S (M–OH): 331.1474. Found: 331.1474. Anal. Calcd for C₁₈H₂₄-N₂O₃S: C, 62.07; H, 6.89; N, 8.04; S, 9.19. Found: C, 62.18; H, 6.83; N, 7.99; S, 9.14.

4.5. Crystal data for 10

X-ray data were collected at 293 K on a SMART CCD-BRUKER diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods (SIR92). Refinement was done by full-matrix least-squares procedures on F^2 using SHELXL-97. The nonhydrogen atoms were refined anisotropically whereas hydrogen atoms were refined isotropically. $C_{18}H_{24}N_2O_3S$; MW = 348.45; colourless crystal; crystal system: orthorhombic; space group P2(1)2(1)2(1); cell parameters, a = 8.5749(23) A, b =11.8643(32) Å, c = 18.1951(49) Å; V = 1851.08 Å³, Z =4, $\rho = 1.25 \text{ g cm}^{-3}$, F(000) = 743.9, $\mu = 0.192 \text{ mm}^{-1}$. Total number of l.s. parameters = 222, R1 = 0.046 for 3432 $F_{o} > 4\sigma(F_{o})$ and 0.050 for all 3692 data. wR2 = 0.107, GOF = 1.138, restrained GOF = 1.138 for all data. An ORTEP diagram of 10 with 50% ellipsoidal probability has been shown in Figure 1. Crystallographic data has been deposited with Cambridge Crystallographic Data Centre (CCDC 260156).

4.6. (+)-(1*R*,4*S*,6*R*)-4-Isopropenyl-1,6-dimethyl-7-oxabicyclo[4.1.0]heptan-2-one 11

To an ice cold, magnetically stirred solution of allyl alcohol **12** (460 mg, 2.80 mmol) in dry CH₂Cl₂ (4 mL) were added solid NaHCO₃ (\approx 50 mg) and 70% MCPBA (70% assay, 820 mg, 3.32 mmol). The reaction mixture was slowly warmed to rt and stirred for 2 h protected

from light. It was then washed with saturated aq Na₂SO₃ solution (5 mL) and extracted with CH₂Cl₂ (3 × 3 mL). The combined organic extract was washed with brine and dried over Na₂SO₄. Evaporation of the solvent and purification of the residue on a silica gel column using ethyl acetate–hexane (1:20–1:10) as eluent furnished the epoxy alcohol **13** (375 mg, 75%) as oil. $[\alpha]_D^{26} = +24.5$ (*c* 0.98, CHCl₃). IR (neat): v_{max}/cm^{-1} 3435, 1645, 890. ¹H NMR (300 MHz, CDCl₃ + CCl₄): δ 4.64 (2H, s), 3.74–3.64 (1H, m), 2.72–2.62 (1H, m), 2.08–1.90 (1H, m), 1.80–1.60 (3H, m), 1.65 (3H, s), 1.36 (3H, s), 1.32 (3H, s). ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 147.3 (C), 109.7 (CH₂), 72.4 (CH), 64.9 (C), 64.7 (C), 39.8 (CH), 35.2 (CH₂), 33.6 (CH₂), 21.5 (CH₃), 20.0 (CH₃), 15.1 (CH₃). HRMS: *m/z* Calcd for C₁₁H₁₆O₂Na (M+Na): 203.1048. Found: 203.1047.

To a magnetically stirred solution of epoxy-alcohol **13** (120 mg, 0.66 mmol) in dry CH₂Cl₂ (2 mL) was added finely powdered NaOAc (426 mg, 2.5 equiv to PCC) followed by PCC (426 mg, 1.97 mmol) in portions. The reaction mixture was stirred for 5 h at rt. It was then filtered through a small silica gel column using excess ether. Evaporation of the solvent and rapid purification of the residue on a silica gel column using ethyl acetate–hexane (1:5) as eluent furnished the epoxy ketone **11** (85 mg, 72%) as oil. $[\alpha]_D^{26} = +21.5$ (*c* 1.21, CHCl₃). IR (neat): v_{max}/cm^{-1} 1714, 1646, 895. ¹H NMR (300 MHz, CDCl₃ + CCl₄): δ 4.71 (2H, s), 2.83 (1H, dd, *J* 14.1 and 12.3 Hz), 2.60–2.45 (1H, m), 2.12–1.90 (3H, m), 1.70 (3H, s), 1.42 (3H, s), 1.36 (3H, s). ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 207.6 (C), 146.0 (C), 110.8 (CH₂), 68.1 (C), 63.8 (C), 43.5 (CH), 39.5 (CH₂), 34.8 (CH₂), 21.3 (CH₃), 19.5 (CH₃), 11.3 (CH₃).

4.7. (-)-(2*R*,4*S*)-2-Acetyl-4-isopropenyl-2-methylcyclopentanone 14

Reaction of keto-epoxide 11 (70 mg, 0.4 mmol) in dry CH_2Cl_2 (4 mL, 0.1 M) with PTSA (380 mg, 2 mmol), as described for diketone 9, and purification of the product on a silica gel column using ethyl acetate-hexane (1:50) as eluent furnished diketone 14 (45 mg, 65%) as an oil. $[\alpha]_{D}^{25} = -107.9$ (c 1.14, CHCl₃). IR (neat): $v_{max}/$ cm⁻¹ 1742, 1705, 1648, 890. ¹H NMR (400 MHz, $CDCl_3 + CCl_4$: δ 4.80 (1H, s), 4.75 (1H, s), 2.84 (1H, ddd, J 12.3, 6.2 and 2.4 Hz), 2.71 (1H, tt, J 18.3 and 7.5 Hz), 2.50 (1H, ddd, J 18.3, 7.5 and 2.3 Hz), 2.19 (1H, dd, J 18.3 and 12.0 Hz), 2.20 (3H, s), 1.77 (3H, s), 1.48 (1H, t, J 12.0 Hz), 1.39 (3H, s). ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 214.2 (C), 203.9 (C), 145.9 (C), 109.9 (CH₂), 66.0 (C), 42.8 (CH₂), 40.0 (CH), 39.0 (CH₂), 25.6 (CH₃), 21.9 (CH₃), 21.1 (CH₃). Mass: *m*/*z* 180 (M⁺, 3), 138 (15), 137 (30), 123 (27), 109 (12), 96 (50), 95 (60). HRMS: m/z Calcd for $C_{11}H_{17}O_2$ (M+1): 181.1228. Found: 181.1228.

4.8. (+)-(2R,3R,5R)-3-Chloro-2-hydroxy-5-isopropenyl-2,3-dimethylcyclohexanone 15 and (-)-(2S,5R)-2-hydroxy-5-isopropenyl-2,3-dimethylcyclohex-3-enone 16

To a cold (-70 °C), magnetically stirred solution of the keto-epoxide **8** (60 mg, 0.33 mmol) in dry CH₂Cl₂

(3.3 mL, 0.1 M) was added a solution of TiCl₄ (0.1 mL, 1 M in CH_2Cl_2 , 0.1 mmol). The reaction mixture was then allowed to warm to 0 °C over a period of 3 h and quenched with saturated aq NaHCO₃ solution (5 mL). The organic layer was separated, washed with brine and dried over Na₂SO₄. Evaporation of the solvent and purification of the residue on a silica gel column using CH₂Cl₂-hexane (1:4) as eluent furnished chlorohydrin **15** (25 mg, 35%) as oil. $[\alpha]_D^{26} = +49.5$ (*c* 3.11, CHCl₃). IR (neat): $v_{\text{max}}/\text{cm}^{-1}$ 3480, 1718, 1646, 896. ¹H NMR $(300 \text{ MHz}, \text{ CDCl}_3 + \text{CCl}_4): \delta 4.85 (1\text{H}, \text{s}), 4.80 (1\text{H}, \text{s})$ s), 3.92 (1H, br s), 2.71–2.13 (5H, m), 1.78 (3H, s), 1.54 (3H, s), 1.50 (3H, s). ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 210.1 (C), 145.0 (C), 111.5 (CH₂), 81.7 (C), 75.3 (C), 44.9 (CH₂), 40.6 (CH₂), 40.3 (CH), 25.6 (CH₃), 24.2 (CH₃), 20.5 (CH₃). Mass: 216 (M⁺, 3), 173 (14), 139 (23), 137 (25), 130 (12), 123 (20), 121 (14), 109 (18), 95 (47), 85 (100). HRMS: m/z Calcd for C₁₁H₁₇ClO₂Na (M+Na): 239.0815. Found: 239.0810.

Further elution of the column using CH₂Cl₂-hexane (1:1) furnished allyl alcohol **16** (20 mg, 34%) as oil. $[\alpha]_{2}^{26} = -34.5$ (*c* 1.68, CHCl₃). IR (neat): v_{max}/cm^{-1} 3486, 1720, 1645, 896. ¹H NMR (300 MHz, CDCl₃ + CCl₄): δ 5.30 (1H, br s), 4.81 (1H, s), 4.80 (1H, s), 3.57 (1H, s), 3.22–3.13 (1H, m), 2.74 (1H, dd, *J* 12.3 and 10.2 Hz), 2.59 (1H, ddd, *J* 12.3, 6.3 and 0.9 Hz), 1.85 (3H, t, *J* 1.8 Hz), 1.75 (3H, s), 1.46 (3H, s). ¹³C NMR (75 MHz, CDCl₃ + CCl₄): δ 211.0 (C), 146.3 (C), 140.4 (C, C-3), 124.6 (CH), 111.8 (CH₂), 74.8 (C), 46.5 (CH), 39.5 (CH₂), 27.4 (CH₃), 19.7 (CH₃), 17.1 (CH₃). Mass: 181 (M⁺ + 1, 4), 151 (28), 137 (43), 123 (100), 109 (54), 95 (71). HRMS: *m/z* Calcd for C₁₁H₁₆O₂Na (M+Na): 203.1048. Found: 203.1040.

4.9. (-)-(2*S*,3*S*,5*R*)-3-Chloro-2-hydroxy-5-isopropenyl-2,3-dimethylcyclohexanone 17

Reaction of keto-epoxide 11 (80 mg, 0.44 mmol) in dry CH₂Cl₂ (4.4 mL, 0.1 M) with TiCl₄ (0.13 mL, 1 M solution in CH₂Cl₂, 0.13 mmol) for 3 h as described above, and purification on a silica gel column using ethyl acetate-hexane (1:50) as eluent furnished chlorohydrin 17 (75 mg, 78%) as a solid, which was crystallised from hexanes. Mp: 77–79 °C. $[\alpha]_D^{24} = -13.8$ (c 3.9, CHCl₃). IR (neat): v_{max}/cm^{-1} 3473, 1715, 1646, 895. ¹H NMR $(300 \text{ MHz}, \text{CDCl}_3 + \text{CCl}_4)$: δ 4.79 (2H, s), 2.94 (1H, d, J 12.9 Hz), 2.90–2.75 (2H, m), 2.60 (1H, br s), 2.41 (1H, dd, J 14.0 and 11.7 Hz), 2.27 (1H, m of d, J 11.7 Hz), 1.88 (1H, m of d, J 14.0 Hz), 1.77 (3H, s), 1.68 (3H, s), 1.45 (3H, s). ¹³C NMR (75 MHz, $CDCl_3 + CCl_4$): δ 208.3 (C), 146.3 (C), 110.8 (CH₂), 78.5 (C), 74.9 (C), 40.9 (CH₂), 40.44 (CH), 40.41 (CH₂), 26.0 (CH₃), 20.7 (CH₃), 18.1 (CH₃). Mass: *m*/*z* 183 (M⁺-H₂O-CH₃, 3), 149 (18), 139 (20), 137 (27), 123 (26), 109 (28), 95 (46). HRMS: m/z Calcd for C₁₁H₁₇ClO₂Na (M+Na): 239.0815. Found: 239.0816. Anal. Calcd for C₁₁H₁₇ClO₂: C, 60.97; H, 7.91. Found: C, 60.71; H, 8.02.

4.10. Rearrangement of the epoxide 8 with BF₃·Et₂O

To a cold $(-70 \,^{\circ}\text{C})$, magnetically stirred solution of keto-epoxide **8** (90 mg, 0.5 mmol) in dry CH₂Cl₂

(5 mL, 0.1 M) was added a solution of freshly distilled BF_3 ·Et₂O (0.5 mL, 1 M in CH₂Cl₂, 0.5 mmol). The reaction mixture was then allowed to warm to rt over a period of 7 h and the reaction guenched with saturated ag NaHCO₃ solution (5 mL). The organic layer was separated, washed with brine and dried over Na₂SO₄. Evaporation of the solvent and purification of the residue on a silica gel column using CH_2Cl_2 -hexane (1:10) as eluent furnished, first diketones 14 (19 mg, 21%) and diketone 9 (28 mg, 31%) as oils. Further elution of the column using CH₂Cl₂-hexane (1:2) furnished lactone 18 (15 mg, 17%) as oil. $[\alpha]_D^{26} = +58.8 (c \ 0.97, CHCl_3)$. IR (neat): v_{max}/cm^{-1} 1771. ¹H NMR (300 MHz, CDCl_3 + CCl_4): δ 2.62 (1H, dd, J 16.8 and 8.4 Hz), 2.35-2.14 (4H, m), 2.19 (1H, dd, J 16.8 and 8.1 Hz), 1.94 (1H, d, J 15.3 Hz), 1.66 (6H, s), 1.39 (3H, s). ¹³C NMR (75 MHz, $CDCl_3 + CCl_4$: δ 175.3 (C), 124.9 (C), 124.2 (C), 85.5 (C), 41.9 (CH₂), 39.8 (CH), 35.9 (CH₂), 34.0 (CH₂), 27.1 (CH₃), 19.4 (CH₃), 19.3 (CH₃). Mass: m/z 180 $(M^+, 31), 165 (29), 162 (25), 137 (29), 123 (30), 121$ (51), 120 (30). HRMS: m/z Calcd for $C_{11}H_{16}O_2Na$ (M+Na): 203.1048. Found: 203.1058.

4.11. (-)-(1*R*,3*R*,4*R*,6*S*)-3,4-Dibromo-3,4,6-trimethyl-7-oxabicyclo[4.3.0]nonane 19

To a magnetically stirred ice cold solution of lactone 18 (20 mg, 0.11 mmol) in dry CCl₄ (3 mL) was added bromine (0.1 mL, excess). The reaction mixture was stirred for 30 min at the same temperature. Excess bromine and the solvent were removed under reduced pressure. Purification of the residue on a silica gel column using ethyl acetate-hexane (1:20) as eluent furnished the dibromide **19** (15 mg, 40%) as a crystalline solid, which was recrystallised from a mixture of CH₂Cl₂-hexanes. Mp: 119-122 °C. $[\alpha]_{D}^{25} = -15.6$ (*c* 1.22, CHCl₃). IR (neat): v_{max}/cm^{-1} 1773. ¹H NMR (300 MHz, CDCl₃ + CCl₄): δ 2.92 (1H, dd, J 17.1 and 7.2 Hz), 2.80-2.65 (1H, m), 2.72 and 2.47 (2H, 2×d, J 16.5 Hz), 2.36–2.25 (1H, m), 2.19 (1H, d, J 17.1 Hz), 2.11 (1H, dd, J 15.0 and 6.6 Hz), 2.03 (3H, s), 1.99 (3H, s), 1.39 (3H, s). ¹³C NMR (75 MHz, $CDCl_3 + CCl_4$): δ 159.0 (C), 82.4 (C), 73.3 (C), 65.7 (C), 47.6 (CH₂), 43.1 (CH₂), 38.6 (CH), 35.7 (CH₂), 31.5 (CH₃), 30.5 (CH₃), 27.8 (CH₃). Mass: m/z 261 and 259 (M⁺-Br, 5%), 179 (46), 178 (28), 133 (100), 119 (17), 109 (12), 107 (11), 105 (10). HRMS: m/z Calcd for C₁₁H₁₆Br₂O₂K (M+K): 376.9154. Found: 376.9155.

4.12. Crystal data for 19

X-ray data were collected at 293 K on a SMART CCD-BRUKER diffractometer with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The structure was solved by direct methods (SIR92). Refinement was by full-matrix least-squares procedures on F^2 using SHELXL-97. The nonhydrogen atoms were refined anisotropically whereas hydrogen atoms were refined isotropically. C₁₁H₁₆Br₂O₂; MW = 340.06; colourless crystal; crystal system: orthorhombic; space group P2(1)2(1)2(1); cell parameters, a = 7.5789(20) Å, b = 9.2141(24) Å, c = 18.4287(47) Å; V = 1286.93(6) Å³, Z = 4, $\rho = 1.75$ g cm⁻³, F(000) = 671.9, $\mu = 6.279$ mm⁻¹. Total number of l.s. parameters = 139, R1 = 0.034 for 2187 $F_0 > 4\sigma(F_0)$ and 0.046 for all 2604 data. wR2 = 0.080, GOF = 1.017, restrained GOF = 1.017 for all data. An ORTEP diagram of 19 with 50% ellipsoidal probability has been shown in Figure 2. Crystallographic data has been deposited with Cambridge Crystallographic Data Centre (CCDC 260154).

4.13. Reaction of the keto-epoxide 11 with BF₃·Et₂O

Reaction of keto-epoxide **11** (90 mg, 0.5 mmol) in dry CH_2Cl_2 (5 mL, 0.1 M) with freshly distilled $BF_3 \cdot Et_2O$ (0.5 mL, 1 M in CH_2Cl_2 , 0.5 mmol) and purification on a silica gel column using ethyl acetate-hexane (1:10) as eluent furnished, first diketone **14** (63 mg, 70%) as oil. Further elution of the column furnished diketone **9** (21 mg, 24%) as oil.

Acknowledgements

We thank the CCD facility of IISc. for providing the X-ray diffraction data and the CSIR, New Delhi, for the award of a research fellowship to S.S.V.R.

References

- House, H. O.; Ryerson, G. D. J. Am. Chem. Soc. 1961, 83, 979; Bach, R. D.; Tubergen, M. W.; Klix, R. C. Tetrahedron Lett. 1986, 27, 3565–3568; Klix, R. C.; Bach, R. D. J. Org. Chem. 1987, 52, 580–586, and references cited therein.
- Yamano, Y.; Tode, C.; Ito, M. J. Chem. Soc., Perkin Trans. 1 1998, 2569–2581; Sankararaman, S.; Nesakumar, J. E. J. Chem. Soc., Perkin Trans. 1 1999, 3173–3175, and references cited therein.
- Carman, R. M.; Van Dongen, J. M. A. M. Aust. J. Chem. 1986, 39, 817–820.
- 4. Srikrishna, A.; Hemamalini, P. Indian J. Chem. 1990, 29B, 152–153.
- Santos, R. B. D.; Brocksom, T. J.; Brocksom, U. Tetrahedron Lett. 1997, 38, 745–748.
- Garver, L.; van Eikeren, P.; Byrd, J. E. J. Org. Chem. 1976, 41, 2773–2774.
- 7. Crystallographic data has been deposited with the Cambridge Crystallographic Data Centre, CCDC 260155.
- Bach, R. D.; Klix, R. C. Tetrahedron Lett. 1985, 26, 985– 988.